AKT2 Knockout A2780 Cell Pool

Hot Products

undefined
undefined
+
  • undefined
  • undefined

Number:

LM01013105221

Product ID: LM01013105221

Market price

Selling Price:  ¥ 5499

Quantity
-
+

Stock surplus

Contact us to order

Antibody custom service consulting

隐藏域元素占位

  • 产品描述
  • 细胞复苏
  • 细胞传代
  • 细胞冻存
  • 抗体验证结果
    • Brand: ELEM粒曼
    • Commodity name: AKT2 Knockout A2780 Cell Pool
    • Commodity ID: LM01013105221
    • Gene Symbol: AKT2
    • Ensembl ID: ENSG00000105221
    • Uniprot ID: P31751
    • 宿主细胞 / 类型: A2780/人卵巢癌细胞
    • NCBI Gene ID: 208
    • 规格: 1×10^6 cells/ 冻存管
    • 生长培养基: DMEM+10% FBS+1% P/S
    • 筛选标记: N/A
    • 生长特性: 贴壁细胞,上皮细胞样
    • 培养条件: 37℃,5% CO2 的培养箱,1/3 到 1/4 传代
    • 倍增时间: ~16 hours
    • 参考换液频率: 2~3次/周
    • 支原体检测结果: 阴性
    • 敲除效率(Sanger测序): >70%
    • 蛋白质组验证结果: N/A
    • 抗体货号: 添加中
    • 目标基因介绍: AKT2 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface. Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling. Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport. AKT regulates also the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity. Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven. AKT regulates also cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating mTORC1 signaling and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1. AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization. In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319'. FOXO3 and FOXO4 are phosphorylated on equivalent sites. AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1. AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis. Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis. Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity. The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth. AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation. Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I). AKT mediates the antiapoptotic effects of IGF-I. Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. May be involved in the regulation of the placental development.||One of the few specific substrates of AKT2 identified recently is PITX2. Phosphorylation of PITX2 impairs its association with the CCND1 mRNA-stabilizing complex thus shortening the half-life of CCND1. AKT2 seems also to be the principal isoform responsible of the regulation of glucose uptake. Phosphorylates C2CD5 on 'Ser-197' during insulin-stimulated adipocytes. AKT2 is also specifically involved in skeletal muscle differentiation, one of its substrates in this process being ANKRD2. Down-regulation by RNA interference reduces the expression of the phosphorylated form of BAD, resulting in the induction of caspase-dependent apoptosis. Phosphorylates CLK2 on 'Thr-343'.
    • 细胞开发路径: 采用CRISPR-RNP方法生成稳定KO Cell Pool;Sanger 测序结果显示KO Cell Pool敲除效率>70%。
    • 应用: 高敲除效率的基因敲除细胞池(KO Cell Pool),特别适用于初步功能分析、复杂疾病模型的开发、精准药物筛选以及广泛的基因发现研究。KO pool能够无需繁琐的单克隆挑选过程,直接应用于多种类型的测定和分析,大幅提升实验效率。
    Key words:
    • AKT2
  • 01.  在 37℃水浴中预热完全培养基。
    02.  将冻存管在 37℃水浴中解冻 1-2 分钟。
    03.  将冻存管转移到生物安全柜中,并用 70% 乙醇擦拭表面。
    04.  拧开冻存管管盖,将细胞悬液轻轻转移到含有 9mL 完全培养基的无菌离心管中。
    05.  在室温下以 125g 离心 5-7 分钟,弃上清。
    06.  用 5mL 的完整培养基重悬细胞沉淀,将细胞悬液转移到 T25 培养瓶中。
    07.  将细胞转移到 37℃,5% CO2 的培养箱中培养。
    08.  参考传代比例:1/3 到 1/4 传代,2-3 天长满。

  • 01.  待培养瓶中细胞汇合度至 80%-90% 以上,可进行细胞传代。
    02.  将培养基、PBS、胰酶(0.25%Trypsin_EDTA Gibco 25200-056) 等从 4℃冰箱中拿出, 置于 37℃水浴中温度接近 37℃时取出并在瓶子表面喷洒 75% 酒精后置于生物安全柜中。

    03.  从培养箱中取出待传代的培养瓶,瓶身喷洒 75% 酒精后置于生物安全柜中。
    04.  为避免冲散细胞,沿培养瓶上壁 PBS 润洗细胞,清洗细胞后弃去,T25 加 2mL。
    05.  加入对应体积的胰酶(T75 加 1.5mL, T25 加 0.5mL)  ,并轻轻晃动瓶身使胰酶平铺满细胞 底部。可根据实际情况适当增加或减少用量。约 1-2min 后大部分细胞脱落时,加入对应体积的完全培养基终止消化,并用 5mL 移液管轻轻吹打至细胞全部脱落。
    06.  将细胞悬液转移至 15mL 离心管,悬液 300g 离心 5min,弃上清。
    07.  移取 5mL 完全培养基重悬细胞,按需求调整接种比例,并补充培养瓶中完全培养基,T75 加至 13-15mL,T25 加至 5mL,加 1% 双抗。
    08.  盖上瓶盖拧紧后轻轻晃动瓶身,使细胞混合均匀后置于 37℃,5% CO2 培养箱中。

  • 01.  准备冻存液,并提前预冷。
    02.  确保待冻存的细胞满足冻存要求,用显微镜检查以下状态:健康的外观及形态特征、所处生 长周期(对数晚期)、无污染或衰退迹象。
    03.  对细胞进行消化及离心处理(具体步骤参考传代培养流程)
    04.  按照每管 1mL 的量添加冻存液重悬细胞,吹打均匀后分装至冻存管。
    05.  将细胞放在程序降温盒中,在 -80℃冰箱中冷冻。
    06.  后续将细胞转移到液氮罐中,以便长期储存。

  • 抗体验证中

Classification: Gene Knockout Cell Pool(KO Pool)

Cell Line Information

Gene Symbol

AKT2

NCBI Gene ID

208

Ensembl ID

ENSG00000105221

Uniprot ID

P31751

Screening marker

N/A

Host cell/type

A2780/人卵巢癌细胞

Specifications

1×10^6 cells/ 冻存管

Growth Medium

DMEM+10% FBS+1% P/S

growth characteristics

贴壁细胞,上皮细胞样

culture condition

37℃,5% CO2 的培养箱,1/3 到 1/4 传代

doubling time

~16 hours

Reference fluid change frequency

2~3次/周

Mycoplasma test results

阴性

Knock-out validation

Knockout efficiency (Sanger sequencing)

>70%

Proteome Validation Results

N/A

Antibody number

添加中

Antibody validation results

抗体验证中

Cell Line Description

Introduction of target gene

AKT2 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface. Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling. Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport. AKT regulates also the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity. Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven. AKT regulates also cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating mTORC1 signaling and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1. AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization. In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319'. FOXO3 and FOXO4 are phosphorylated on equivalent sites. AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1. AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis. Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis. Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity. The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth. AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation. Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I). AKT mediates the antiapoptotic effects of IGF-I. Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. May be involved in the regulation of the placental development.||One of the few specific substrates of AKT2 identified recently is PITX2. Phosphorylation of PITX2 impairs its association with the CCND1 mRNA-stabilizing complex thus shortening the half-life of CCND1. AKT2 seems also to be the principal isoform responsible of the regulation of glucose uptake. Phosphorylates C2CD5 on 'Ser-197' during insulin-stimulated adipocytes. AKT2 is also specifically involved in skeletal muscle differentiation, one of its substrates in this process being ANKRD2. Down-regulation by RNA interference reduces the expression of the phosphorylated form of BAD, resulting in the induction of caspase-dependent apoptosis. Phosphorylates CLK2 on 'Thr-343'.

Cell development path

采用CRISPR-RNP方法生成稳定KO Cell Pool;Sanger 测序结果显示KO Cell Pool敲除效率>70%。

Application

高敲除效率的基因敲除细胞池(KO Cell Pool),特别适用于初步功能分析、复杂疾病模型的开发、精准药物筛选以及广泛的基因发现研究。KO pool能够无需繁琐的单克隆挑选过程,直接应用于多种类型的测定和分析,大幅提升实验效率。

Cell Culture Instructions

Cell Resuscitation

01.  在 37℃水浴中预热完全培养基。
02.  将冻存管在 37℃水浴中解冻 1-2 分钟。
03.  将冻存管转移到生物安全柜中,并用 70% 乙醇擦拭表面。
04.  拧开冻存管管盖,将细胞悬液轻轻转移到含有 9mL 完全培养基的无菌离心管中。
05.  在室温下以 125g 离心 5-7 分钟,弃上清。
06.  用 5mL 的完整培养基重悬细胞沉淀,将细胞悬液转移到 T25 培养瓶中。
07.  将细胞转移到 37℃,5% CO2 的培养箱中培养。
08.  参考传代比例:1/3 到 1/4 传代,2-3 天长满。

cell passage

01.  待培养瓶中细胞汇合度至 80%-90% 以上,可进行细胞传代。
02.  将培养基、PBS、胰酶(0.25%Trypsin_EDTA Gibco 25200-056) 等从 4℃冰箱中拿出, 置于 37℃水浴中温度接近 37℃时取出并在瓶子表面喷洒 75% 酒精后置于生物安全柜中。

03.  从培养箱中取出待传代的培养瓶,瓶身喷洒 75% 酒精后置于生物安全柜中。
04.  为避免冲散细胞,沿培养瓶上壁 PBS 润洗细胞,清洗细胞后弃去,T25 加 2mL。
05.  加入对应体积的胰酶(T75 加 1.5mL, T25 加 0.5mL)  ,并轻轻晃动瓶身使胰酶平铺满细胞 底部。可根据实际情况适当增加或减少用量。约 1-2min 后大部分细胞脱落时,加入对应体积的完全培养基终止消化,并用 5mL 移液管轻轻吹打至细胞全部脱落。
06.  将细胞悬液转移至 15mL 离心管,悬液 300g 离心 5min,弃上清。
07.  移取 5mL 完全培养基重悬细胞,按需求调整接种比例,并补充培养瓶中完全培养基,T75 加至 13-15mL,T25 加至 5mL,加 1% 双抗。
08.  盖上瓶盖拧紧后轻轻晃动瓶身,使细胞混合均匀后置于 37℃,5% CO2 培养箱中。

cell cryopreservation

01.  准备冻存液,并提前预冷。
02.  确保待冻存的细胞满足冻存要求,用显微镜检查以下状态:健康的外观及形态特征、所处生 长周期(对数晚期)、无污染或衰退迹象。
03.  对细胞进行消化及离心处理(具体步骤参考传代培养流程)
04.  按照每管 1mL 的量添加冻存液重悬细胞,吹打均匀后分装至冻存管。
05.  将细胞放在程序降温盒中,在 -80℃冰箱中冷冻。
06.  后续将细胞转移到液氮罐中,以便长期储存。